
AirTaxiSim: A Simulator for Autonomous Air Taxis

Ayoosh Bansal∗† and Mikael Yeghiazaryan*‡

University of Illinois Urbana-Champaign, Urbana, Illinois, 61801

Hyung-Jin Yoon*§

Tennessee Tech University, Cookeville, Tennessee, 38505

Duo Wang¶‖

University of Nevada, Reno, Nevada, 89557

Ashik E Rasul∗∗

Tennessee Tech University, Cookeville, Tennessee, 38505

Chuyuan Tao††

University of Illinois Urbana-Champaign, Urbana, Illinois, 61801

Yang Zhao‡‡

Northeastern University, Boston, Massachusetts, 02115

Tianyi Zhu§§

California Institute of Technology, Pasadena, California, 91106

Oswin So¶¶ and Chuchu Fan∗∗∗

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139

Petros Voulgaris†††

University of Nevada, Reno, Nevada, 89557

Naira Hovakimyan‡‡‡ and Lui Sha§§§

University of Illinois Urbana-Champaign, Urbana, Illinois, 61801

The rapid advancements in air mobility vehicles is paving the way for air taxis to become
a viable mode of public transportation. The next technological frontier for air taxis is fully
autonomous operation. Developing safe and efficient autonomous control for air taxis presents
greater challenges than for ground vehicles due to the inherent instability of aerial vehicles.
Therefore, simulation solutions for autonomous air taxis will play a crucial role in accelerating
their development and eventual safe deployment.

This paper introduces AirTaxiSim, an end to end simulation framework for autonomous
air taxis. AirTaxiSim is designed to model and analyze the complexities of autonomous air

∗Ayoosh Bansal, Mikael Yeghiazaryan, and Hyung-Jin Yoon contributed equally to this work.
†Postdoctoral Research Associate, Computer Science, 201 North Goodwin Avenue, Urbana, IL 61801, USA.
‡Research Assistant, Mechanical Science and Engineering, 1206 W. Green St. MC 244, Urbana, IL 61801, USA.
§Assistant Professor, Mechanical Engineering, 115 W. 10𝑡ℎ St, Cookeville, TN 38505, USA.
¶Postdoctoral Research Associate, Mechanical Engineering Department, 1664 N. Virginia Street, Reno, NV 89557
‖Visiting Scholar at UIUC, Mechanical Science & Engineering Department, 105 S Mathews Ave, Urbana, IL 61801

∗∗Graduate Student, Mechanical Engineering Department, 1 William L Jones Dr, Cookeville, TN 38505.
††Graduate Student, 1206 W. Green St. MC 244, Urbana, IL 61801, USA.
‡‡Research Assistant, Department of Mechanical and Industrial Engineering, 360 Huntington Avenue, Boston, Massachusetts, 02115
§§Research Assistant, Electrical Engineering, 1200 East California Boulevard Pasadena, California, 91125
¶¶Graduate Student, Department of Aeronautics and Astronautics, 125 Massachusetts Ave, Cambridge, Massachusetts, 02139

∗∗∗Associate Professor, Department of Aeronautics and Astronautics, 125 Massachusetts Ave, Cambridge, Massachusetts, 02139
†††Professor, Mechanical Engineering Department, 1664 N. Virginia Street, Reno, NV 89557
‡‡‡W. Grafton and Lillian B. Wilkins Professor, Mechanical Science and Engineering, 1206 W. Green St. MC 244, Urbana, IL 61801, USA.
§§§Donald B. Gillies Chair in Computer Science, Computer Science, 201 North Goodwin Avenue, Urbana, IL 61801, USA.

1



taxi operations in dynamic and cluttered urban environments. AirTaxiSim integrates high-
fidelity physical models of vertical take-off and landing air vehicles in photo-realistic urban
environments. The primary purpose of AirTaxiSim is to evaluate the safety, performance, and
efficiency of autonomous air taxi services, across a variety of scenarios, including dangerous edge
cases. AirTaxiSim also provides methods for generating datasets and establishing benchmarks
for autonomous air taxis. This paper describes the simulator’s construction, functionalities, and
some of the use cases, providing critical information to facilitate its use in advancing autonomy
in aerial vehicles. https://github.com/CPS-IL/airtaxisim

I. Introduction

Autonomous air taxis are poised to revolutionize urban transportation, providing a convenient and efficient mobility
solution [1, 2]. A major challenge in the development of autonomous air taxis are the risks and costs of real world

validation using life scale vehicles. This challenge is further exacerbated by the natural instability of aerial vehicles, as
compared to ground vehicles. Therefore, simulation frameworks will play a pivotal role in development of autonomous
solutions for air taxis [3–5]. The key factor in the utility of such frameworks is their ability to emulate real world
conditions with high fidelity. Prior simulation solutions for autonomous vehicles address important concerns for air
taxis [6–10], however, the existing solutions do not cover the wide range of requirements for end to end autonomy.
Leveraging a photorealistic environment simulator built for ground autonomous vehicles [11], this work introduces
AirTaxiSim for autonomous air taxis operating in high fidelity urban environments. An overview of the simulation
framework is presented in Figure 1.

CARLA simulator [11] provides high fidelity photorealistic environment and physics simulation for ground vehicles.
However, CARLA lacks support for aerial vehicles. To overcome this limitation, AirTaxiSim integrates high fidelity
physics models for aerial vehicles within the CARLA environment. This includes a full-scale hybrid fixed-wing vehicle
with vertical take-off and landing (VTOL) capabilities. This vehicle model is adapted from a simulator developed
by National Aeronautics and Space Administration Langley Research Center [12]. Another vehicle supported is
MiniHawk-VTOL [13, 14], a small tiltrotor aerial vehicle with VTOL capabilities. Therefore, AirTaxiSim natively
supports the two primary use cases for such a simulation framework, i.e., high fidelity simulation for a life scale vehicle,
and a practical option for sim-to-real conversion by using Minihawk. AirTaxiSim is designed to be extensible and
supports other aerial vehicle models with minimal integration overheads.

Leveraging docker containers, AirTaxiSim is designed to be highly modular. The modularized components use
Robot Operating System (ROS) Noetic [15] as the middleware to communicate. Combining the flexibilities provided
by docker containers, ROS, and a custom hierarchical configuration layer, AirTaxiSim allows easy selection between
redundant components, e.g., selecting one of different path planning algorithm implementations. Therefore, AirTaxiSim
is built for easy integration of novel solutions to specific tasks to validate and benchmark specific solutions, operating
as part of the overall end to end system. Furthermore, simulation techniques provide perfect alternatives for certain
tasks, facilitating the validation of individual components without interference from errors in other components. The
configuration layer allows for easy definition of specific evaluation scenarios, including various initial states of the
vehicle, infrastructure, environmental conditions, and ground plus aerial traffic.

This paper presents multiple case studies showcasing some of the ways the simulator can be used in advancing
autonomy solutions for air taxis (Section IV). These case studies include training for machine learning solutions,
validation of safety solutions, and performance benchmarking. AirTaxiSim enables experimentation and validation
of autonomy solutions for autonomous air taxis and facilitate research in robust and scalable solutions for urban air
mobility. This is especially suited for validation of solutions to safety challenges in learning-enabled autonomy for aerial
vehicles [16, 17]. Preliminary versions of AirTaxiSim have been used to for various purposes in prior works, including
validation of safety solutions [18], generate synthetic data for model training [19], and integration with verification
framework [20]. By providing a flexible high-fidelity platform, AirTaxiSim supports the advancement of autonomy in
air taxi systems, accelerating the transition to safe and efficient real-world deployment.

The key contributions of this work are:
• AirTaxiSim, a software in the loop simulation framework for autonomous air taxis.
• Functional and implementation descriptions, providing guidance for use and customization of this simulator for

autonomous air taxi research.
• Case studies presenting some of the of use cases supported by AirTaxiSim, including dataset generation and

benchmarking.

2

https://github.com/CPS-IL/airtaxisim


Environment Vehicle Model

Perception Planning

Simulation Control

Time of flight, Target reached,
Collision rate, Simulation recording, 
etc.

Data Collection

Simulation Control
Start End

Scenario FlightPre-checks Post-Processing

...

Camera Images Lidar Data

Ego vehicle

Adversarial vehicles

Ground vehicles

Buildings

Scenario Generation

Fig. 1 AirTaxiSim Overview: a) Environment includes elements like the ego vehicle, adversarial vehicles,
ground vehicles, and buildings; b) Perception processes sensor data; c) Planning generates paths for the ego
vehicle; d) Vehicle Model simulates ego vehicle physics; e) Simulation Control manages the simulation and
collects data for safety and performance metrics.

II. Related Work
In this section we discuss the prevalent simulation solutions for autonomous vehicles and aerial vehicles. To the best

of our knowledge, AirTaxiSim is the first open-source simulator for autonomous air taxis in realistic urban environments
with end to end autonomy support, providing a valuable resource for autonomous air taxi research and development.

A. Autonomous Ground Vehicle Simulators
Autonomous ground vehicle simulators play a critical role in the development and testing of autonomous driving

technologies, offering a safe and cost-effective environment for algorithm validation and system integration. Several
well-established simulators have been developed to cater to the diverse needs of autonomous vehicle research.

CARLA [11] is a widely-used simulator for autonomous ground vehicles, providing a photorealistic, high-fidelity
environment with detailed urban settings and traffic dynamics. It supports a range of sensors for testing autonomous
driving systems, including lidar, radar, and cameras. Our work builds on CARLA by integrating aerial vehicle models into
its simulation framework, allowing us to extend its capabilities to urban air mobility applications. LGSVL Simulator [21]
provided similar functionality as CARLA, however, LGSVL Simulator was deprecated in 2022. Therefore, CARLA is
used as the environment simulator in this work.

Autoware [22] is the leading open-source research platform for autonomous vehicles, integrating various sensors
and algorithms for perception, planning and control. It is often used with CARLA or LGSVL Simulator, which provide
a high-fidelity environment for testing vehicle dynamics, sensor simulations, and hardware-in-the-loop systems. This
integration allows for the validation of autonomous driving systems under complex, realistic conditions.

3



Baidu Apollo [23] offers a comprehensive ecosystem for autonomous driving, including a powerful simulation
system. The platform supports the testing of vehicle software in virtual environments, simulating diverse scenarios such
as urban traffic and adverse weather. Apollo’s simulation tools are particularly useful for validating machine learning
models related to path planning, perception, and decision-making.

While simulators like Autoware [22], Baidu Apollo [23], and CARLA [11] are highly effective for ground vehicle
simulation, they focus on ground-based systems, which limits their use for multi-modal transportation systems like air
taxis. This gap highlights the need for simulators that can integrate both ground and aerial vehicle dynamics, enabling
the development of urban air mobility solutions.

B. Aerial Vehicle Simulators
Prior aerial vehicle simulators have primarily focused on the physics of the vehicle itself and the direct effects of

environmental factors, such as wind, on vehicle dynamics. While these simulators are valuable for understanding basic
flight mechanics, autonomous air taxis operating in cluttered urban environments face additional challenges, including
obstacle detection and avoidance, complex traffic scenarios, and real-time decision-making in dynamic conditions.

AirSim [24] is a widely-used simulator for testing aerial vehicles, particularly drones, in realistic environments.
While it offers high-fidelity simulation for aerial vehicle dynamics, it is primarily designed for open or rural environments,
with limited support for simulating complex, dynamic urban traffic. AirSim does not natively integrate urban traffic or
multi-modal interactions, which are critical for urban air mobility (UAM) applications like air taxis. In contrast, our work
builds on a simulator designed for urban environments (e.g., CARLA), incorporating both aerial and ground vehicle
dynamics to enable testing in dense, urban traffic scenarios, which are essential for the safe operation of autonomous air
taxis in real-world settings.

X-Plane [25], another popular simulator, provides a comprehensive simulation platform for both aircraft and
unmanned aerial systems (UAS). It offers a high level of fidelity in terms of aerodynamics, aircraft systems, and
environmental interactions. X-Plane is often used for flight training and vehicle design, but it also serves as a valuable
tool for testing autonomous systems, especially in structured environments. However, like many other simulators,
X-Plane focuses primarily on vehicle dynamics and lacks built-in support for multi-agent simulations and complex
urban environments.

Recent studies have enhanced aerial simulators to better address the complexities of urban air mobility (UAM).
For instance, Lu et al. [6] developed a multi-agent simulation to study the dynamics of autonomous taxis in urban
settings, analyzing travel economics and environmental impacts in the context of UAM systems. Liu et al. designed a
simulation for autonomous aircraft maintenance scheduling [7], while Naser et al. focused on the efficiency of air taxis
in comparison to traditional taxicabs [8]. These studies highlight the growing interests in simulating air taxi operations
in complex urban environments.

Additionally, Barbarino et al. [9] presented high-fidelity aeroacoustic simulations of VTOL aircraft operating
in urban air mobility scenarios, addressing challenges related to noise pollution and flight efficiency. Similarly,
Martín-Lammerding et al. [10] explored high-density air traffic scenarios with a multi-UAS simulator, emphasizing the
need for coordination and collision avoidance in crowded airspace. Altun et al. [26] developed a comprehensive flight
testing and simulation infrastructure for advanced air mobility (AAM), focusing on airspace management and vehicle
performance, whereas our work extends this by integrating both aerial and ground vehicle dynamics in high-fidelity
urban environments, enabling the simulation of complex multi-modal transportation scenarios.

In summary, while existing aerial vehicle simulators provide valuable insights into the dynamics and performance
of autonomous aircraft, they often lack the necessary capabilities to model complex urban environments within
photorealistic environments. This work builds upon these simulators by incorporating both aerial and ground vehicle
dynamics, addressing the unique challenges of urban air mobility through high-fidelity simulations that enable the
testing of multi-modal transportation systems in dense, dynamic traffic scenarios. This integrated approach provides a
critical tool for testing the safety and efficiency of autonomous air taxi systems in urban settings.

C. Urban Aerial Datasets
Several datasets featuring overhead aerial imagery captured by drones provide valuable resources for developing

perception systems for aerial vehicles operating in urban environments. For example, the DOTA dataset [27] offers
images of urban settings with bounding box annotations for various vehicle categories. Similarly, Sun et al. [28]
introduce a dataset containing aerial images of urban areas, which is useful for object detection and classification tasks.
However, these datasets are limited in scope for developing fully autonomous air taxi systems, as they primarily focus

4



Environment

Ground StationSimulation Control

Vehicle & Planning

Planner

Waypoints

CARLA ControllerPhysics Simulation Actuator
commandsEgo vehicle pose

Utilities

NOTE: Connected to everything.

Configuration
File

Logging

NOTE: Connected to everything. NOTE: Connected to everything.

Perception

Sensor Data Processing

RGB Images Lidar Data ...

Other aerial, vehicle trajectories,
Ground traffic, Map, etc.

Ground Station

Global target, etc.

Global target

Host

Simulation
Start

Simulation
End

Detected objects,
occupancy grid, etc A-Star Multi-Agent

Metrics Mission Status

Simulation Recording

Target Reached Check ...

Fig. 2 Detailed system architecture of the air taxi simulator, showcasing key components and their interactions.
While the three containers at the top connect to multiple other modules, these connections are omitted for clarity
to avoid overcrowding the figure.

on perception tasks and do not support other critical components such as planning and control. Moreover, these datasets
do not fully capture the complexity of urban environments that autonomous air taxis will face. For instance, they lack
the presence of other aerial vehicles, which is essential for autonomous air taxi operation. Additionally, a robust air taxi
system must be trained on data that includes failure scenarios, such as collisions, to recognize and avoid such hazards.
Such unsafe scenarios are vastly underrepresented in real-world datasets, including those for ground vehicles [29, 30].

Numerous large-scale datasets are available for autonomous ground vehicles, such as the KITTI dataset [31] and the
Waymo Open Dataset [32]. However, these datasets are tailored for ground vehicles and thus do not include critical
information needed for air taxis, such as wind velocity, overhead viewpoints, or vertical navigation data.

While existing real-world datasets provide valuable resources that can support some aspects of air taxi research,
they fall short in addressing the comprehensive needs of air taxi systems, especially for dense urban environments.
Furthermore, the generation of synthetic datasets specifically designed for air taxi research — capable of simulating the
unique challenges of urban air mobility — remains an under explored area.

Although various simulation tools exist for autonomous ground vehicles, there is a significant gap in simulation
tools for air taxis. Our work addresses this gap by introducing a simulation-based approach to generate synthetic data to
support the development of end-to-end air taxi systems.

III. Simulator Description
This section describes the major components of AirTaxiSim, including their functionality, implementation, and

design decisions. The system architecture of AirTaxiSim is illustrated in Figure 2.

A. Infrastructure
AirTaxiSim is backed by a custom software infrastructure, built to leverage popular software frameworks. This

infrastructure, and the use of popular frameworks, facilitates ease of use, rapid development, modularity, flexibility,
configuration, and robustness of simulation components.

5



1. Host Scripts
AirTaxiSim is launched by running the main script on a host machine. This script parses and loads the configuration

files (Section III.A.2) that define the simulation run, including which simulator components or services to run. A
set of shared utilities are used by the host script and made available to each containerized service (Section III.A.3).
The utilities provide essential functionalities to support the simulation framework. This includes container services
management, configuration management, logging, and containers to host communication.

Based on configuration options, the host scripts set up containers for each service, including their file systems and
any one-time setups, including builds for any ROS packages. From that point the host scripts start each service, and
in conjunction with a simulator control service (Section III.A.4), monitors and controls the simulation run. The host
scripts also aggregate and analyze final results. All these behaviors are configurable using the custom configuration
framework, described in Section III.A.2.

To minimize software dependencies on the host machine, the host scripts primarily use standard python modules,
with the only exception being a third party logging package, loguru [33]. Of special note is the fact that the host machine
does not need to install ROS, which significantly improves the portability of this simulation framework.

2. Configuration Files
Configuration files serve as the interface for defining the simulation scenarios the user wishes to run and select the

automation components for these simulations. The simulator natively supports a wide range of options, with support
to define custom scenarios to fit novel use cases. This configuration plane is designed to be extensible, allowing the
introduction of new options as needed to support diverse tasks and emergent use cases. The hierarchical structure of
the configuration plane, enabled by an include mechanism, further enhances the modularization and configurability of
AirTaxiSim. The current configurable options include

• Containerized services to include in a simulation run, their one time setup and run commands
• Data flows, e.g., to select between different trajectory sources to control the ego vehicle
• The ego vehicle’s∗ initial state
• Simulation target behavior and goal, e.g., landing target
• Initial positions and motion patterns for other aerial vehicles and obstacles
• CARLA configuration
• Ground traffic levels
• Weather conditions
This level of granularity offers users the flexibility to create a vast number of unique simulation scenarios,

accommodating diverse needs. The combinatorial explosion of possible configurations ensures the simulator’s utilities
across a wide range of applications and use cases. Below is an example snippet from a configuration file:

1 # Test
2 map: Town02_Opt
3 spectator_follows_ego_vehicle: false
4

5 # Vehicle
6 ego_vehicle:
7 reference_topic: /target/pose
8 planner_topic: /target/waypoint
9 planner:

10 type: a_star # One of ["simple", "a_star"]
11 distance_threshold: 1 # distance threshold to the current waypoint
12 speed_threshold: 3 # minimum speed required when moving between intermediate points
13 speed_check_time: 0.5 # time period in s to check the speed
14 include: ego_vehicle/jaxguam.yml
15 debug: false
16 location:
17 x: 0
18 y: 75
19 z: 75
20 velocity:
21 x: 0
22 y: 0
23 z: 0

∗Ego vehicle refers to the primary vehicle that is autonomously controlled and observed for the simulation.

6



As shown, the configuration files are designed to be intuitive, allowing users to easily set up and modify simulation
parameters without requiring deep familiarity and technical expertise. This accessibility ensures that researchers and
practitioners alike can efficiently operate the simulator and explore various customizations. Also of note is line 14 in
the snippet above. It shows an include statement, which imports configuration options from the included file. Such a
hierarchical structure improves the readability of the configuration files. More importantly, it allows selection of features
at higher levels of granularity. For example, by modifying line 14 above from include: ego_vehicle/jaxguam.yml
to include: ego_vehicle/minihawk.yml, the simulation would use the minihawk vehicle. The vehicle specific
configuration file includes all options specific to the vehicle as well as corresponding defaults.

3. Modular Services
All simulator components, with the exception of host scripts, are encapsulated in docker containers [34] and run

as docker compose services [35]. A service here is a docker container that fulfills a specific functionality within the
simulation framework. Most services are a ROS package with any accompanying algorithm and implementations,
e.g., YOLOv5, A* planner, and vehicle models, however, this is not a requirement. The services communicate over
network sockets, with ROS providing a publisher subscriber model built over the network sockets. Any inter-service
communication that is not a ROS topic, needs to define its own protocol. An example of this in current AirTaxiSim is
the CARLA control using CARLA Python API [36]. Encapsulating the services in containers facilitates the use of
services with differing dependencies and requirements within the same simulation run and simplifies the inclusion of
new solutions with their specific dependencies. The following services are included in the base simulator:

• Simulation Control — monitors the simulation, records the simulation, coordinates with host scripts, etc.
• Ground Station — represents the physical ground station as a separate container, sets the global mission target, etc.
• Environment — simulates the environment around the vehicle using CARLA.
• Perception — container responsible for retrieving sensor data.
• Vehicle & Planning — simulates the vehicle physics and performs path planning.
The modular architecture of the simulator enables fault injection at various stages of the simulation pipeline. Users

can easily define and customize a wide range of faults, such as perturbations in actuator commands or the injection of
noise into sensor data (e.g.,, camera or LiDAR). Rather than providing a fixed set of predefined faults, the simulator is
designed to be transparent and extensible, allowing users to implement fault models that suit their specific use cases.
Detailed examples and guidance for implementing custom faults are provided in the simulator’s documentation.

4. Simulation Control
Simulation control is a core containerized service that coordinates with the host scripts to manage the execution of

the simulation. It includes a ROS package that monitors critical mission metrics, such as whether the global target has
been reached or if a collision has occurred.

Reaching the global target is determined by evaluating data from various ROS topics that publish the simulation
states. These values are compared against the global target specified in the configuration file for the current simulation.
For example, if the simulation target is successful landing, and the ego vehicle reaches that target, this module records
metrics like time to completion, landing velocity, landing accuracy, etc. and communicates to the host scripts that the
simulation has completed. The host scripts then either terminate the simulation and aggregate results, or trigger the next
simulation run as dictated by configuration options.

Another key feature of the simulation control service is its ability to record simulation runs as rosbags [37]. This
feature can be toggled in the configuration file, allowing users to decide whether to record the simulation and which
topics to record. When enabled, a rosbag file is generated that captures all data published to selected ROS topics.

B. Environment
The simulation environment is built on a customized version of CARLA, providing air taxi specific assets within

CARLA’s high-fidelity representation of urban settings. AirTaxiSim adds landing pads and 3D animation models for
air taxis to CARLA. CARLA provides a rich set of features to emulate urban environments, including detailed road
networks, dynamic traffic, and realistic urban obstacles such as pedestrians, buildings, and other vehicles. CARLA also
provides a flexible infrastructure for defining and controlling objects, that AirTaxiSim leverages to emulate cluttered
environments for air taxis. The environment integrates with the vehicle model, as described in Section III.C.

The environment service is a core component of our simulation pipeline, responsible for initiating the CARLA

7



simulation and configuring its key elements. It spawns the ego vehicle, additional aerial vehicles, and generates ground
traffic according to specifications in the configuration file. Parameters such as the simulation map, the ego vehicle’s
starting position, and the trajectories and starting points of adversarial vehicles are retrieved from the configuration file
and set accordingly.

CARLA emulates sensors for the vehicle, including cameras and LiDAR. The sensors are capable of emulating
effects of weather conditions and noise, as supported natively by CARLA. CARLA generates the output for each sensor
attached to the ego vehicle in the simulation. This sensor data is then published to corresponding ROS topics.

Additionally, leveraging the recording capabilities of our simulator, as detailed in Section III.A, we enable scenarios
involving multiple aerial vehicles, each backed by its own physical engine. This is achieved by pre-recording the
trajectory of an aerial vehicle and then replaying it in subsequent simulation runs, where the recorded path and
vehicle model are integrated into the environment. This approach allows multiple complex aerial vehicles to operate
simultaneously, increasing the difficulty of the aerial navigation task for the ego vehicle.

AirTaxiSim, therefore, maintains all rich features provided by CARLA, while enhancing it with the assets required
for air taxi simulation. Current version of AirTaxiSim is based on CARLA 0.9.15. Work is underway to support Carla
0.10.0, which is based on Unreal Engine 5.5 [38]. This update will significantly improve the visual fidelity of the
simulated environment, reducing the sim-to-real gap.

C. Vehicle Model
The aerial ego vehicle in AirTaxiSim utilize dedicated physics engines to compute the dynamics of the vehicle,

simulating the physical model of the ego vehicle with high fidelity. Given reference trajectory from a path planning
module, the vehicle’s pose is computed by a high fidelity vehicle model, transformed into CARLA’s coordinate frame,
and communicated to CARLA. Within CARLA the ego vehicle is defined as an object without physics or gravity
simulation, allowing the external vehicle model to precisely control the ego vehicle’s behavior. Within CARLA, the ego
vehicle essentially teleports with each pose update from the external vehicle model. CARLA and the vehicle model are
synchronized to ensure a seamless simulation loop. The vehicle model updates the vehicle pose at the same or higher
frequency than CARLA updates to the environment, avoiding any lags and minimizing jitter.

AirTaxiSim includes models for two aerial vehicles.
• The first is a life scale air taxi, adapted from the Generic Urban Air Mobility (GUAM) vehicle simulator developed

by National Aeronautics and Space Administration Langley Research Center [12, 39]. We converted the original
continuous time Simulink model to a time-stepped model implemented in Python using JAX [40]. This converted
model was evaluated to ensure that any quantization error is minimal and there is no significant loss in fidelity [41].
The converted model has significantly higher computational performance to the extent that it can support real-time
execution. It enables use cases where multiple air taxis, controlled by independent instances of the vehicle model,
operate simultaneously within a simulation run. This converted model is also available for independent use [42].

• The second aerial vehicle supported is Minihawk VTOL [13, 14] which utilizes Gazebo simulation [43]. Minihawk
can be 3D printed and assembled to support autonomous control [13]. Therefore, Minihawk provides a highly
accessible avenue for sim-to-real validation within workflows for research and development of autonomy solutions
for VTOL vehicles.

Following the examples of these aerial vehicle models users can integrate their own vehicles. AirTaxiSim
configuration framework is designed to support such flexibilities, as described in Section III.A.2.

Some physics engines for aerial vehicles support interaction with environmental factors, such as wind disturbances
and ground effect modeling. While the current version of AirTaxiSim does not include these capabilities for the two
supported vehicle models, support for environmental interaction is planned for a future release.

The low-level control for the vehicle is integrated within the vehicle models, e.g., PID Control [44, 45] or L1
Adaptive Control [46, 47]. This design choice is governed by two factors. First, the low-level control loop runs at a
much higher frequency (e.g., 400 Hz) compared to other autonomy components (typically 10 Hz). Second, the low-level
control implementation and paramterization is highly specialized to the vehicle models based on different reference
vehicles and specific designs [39]. Therefore, while flexibility and modularity have been prioritized across most system
components, for low-level control, we have opted for a more integrated approach by embedding it as a sub-module of
vehicle models, due to the two key considerations outlined in this paragraph.

The high fidelity vehicle simulators combined with 3D models for these vehicles within CARLA provide a realistic
simulation of aerial vehicles within the CARLA environment.

8



Fig. 3 Simulation example of an air taxi resting on a vertipad, illustrating a key operational scenario for urban
air mobility.

D. Autonomy
The vehicles’ autonomy stack is comprised of perception and planning components. Perception modules process

sensor data, including RGB images and LiDAR-generated point clouds, which may originate from multiple sensors
operating concurrently, extracting relevant information for the planning module. The planning module combines this
processed data with additional inputs, such as the ego vehicle’s current pose, to compute an optimal path toward the
target. For instance, the perception module can provide data like an occupancy grid map or landing zone detection, which
the planning module uses to navigate. The components are designed to be modular and therefore easily replaceable
by alternate implementations. This modular approach supports flexibility, allowing users to test and integrate custom
algorithms for perception and planning. All existing autonomy modules communicate using ROS topics, leveraging the
standardized framework for data exchange.

Aiding the research and development of perception, planning, and control modules for autonomous air taxis is the
central goal of AirTaxiSim. Therefore, while the simulator includes baseline solutions for each, its modular structure
facilitates selection between alternative implementations. The baseline perception includes 3D obstacle detection using
camera and LiDAR sensor data. Yolov5 [48] for landing pad detection and Depth Clustering [49, 50] for verifiable
obstacle detection [18, 51, 52] are included. The baseline path planning implements obstacle avoidance using A*
algorithm [53] and RRT (rapidly exploring random trees).

As example, we provide a baseline autonomy stack comprising perception and planning components, centered
around octomap generation from point cloud data captured by multiple lidar sensors. The point clouds are first merged
through a dedicated node and then passed to the octomap package to construct a 3D occupancy grid map. This map is
used by an RRT-based planner to generate a path to the target location. The planner supports dynamic replanning: if
updated occupancy data indicates a potential collision along the current path, the planner automatically recomputes a
new path using the updated information.

Additionally, as an ongoing long-term goal we will incorporate research solutions developed using AirTaxiSim
within the public repository to promote continuous collaborative research.

IV. Case Studies
In this section we showcase some of the use cases and scenarios that are supported by AirTaxiSim, demonstrating its

versatility and relevance to real-world urban air mobility challenges. These scenarios are designed to reflect realistic
situations that may arise when deploying air taxis in urban environments.

A. Landing on a Vertipad
A fundamental safety-critical requirement for any air taxi is the ability to land safely and accurately on a designated

vertipad. This scenario reflects the envisioned operation of urban air taxi hubs, often referred to as vertiports. To
illustrate this capability, we simulate an air taxi starting in flight and successfully landing on a vertipad, as shown
in Figure 3. The landing maneuver includes communication with the ground station to determine the landing target,
trajectory planning, low level control of the rotors of the vehicle and high fidelity simulation of vehicle pose under the
applied rotor control and environmental conditions.

9



Fig. 4 Simulation of an air taxi navigating a cluttered urban environment, surrounded by various obstacles
such as other air taxis, buildings, and trees.

B. Operating in a Cluttered Environment
A critical challenge for urban air taxis is operating safely in highly cluttered environments. Such scenarios can

involve a dense array of obstacles, including other air taxis, buildings, trees, and other infrastructure typically found
in urban settings. The ability to navigate effectively in these situations is essential for ensuring mission success and
passenger safety. Our simulation pipeline allows the ego vehicle to be surrounded by various types of obstacles and
evaluates its ability to safely navigate out of the cluttered zone to complete its mission. This scenario illustrates the
importance of robust perception, planning, and collision avoidance systems. Figure 4 shows an example of an air taxi
successfully navigating through a cluttered environment, demonstrating the effectiveness of its autonomy module in
maintaining safety and efficiency. A similar scenario was used to validate safety solutions in a prior work [18].

C. Landing on the Ground
In certain scenarios, an air taxi may need to perform an emergency landing. These situations can arise when critical

systems, such as the GPS or vision modules, fail due to errors or damage. Such failures necessitate a prompt and safe
landing to ensure the safety of passengers, pedestrians, and surrounding vehicles. Unlike controlled rooftop landings,
emergency landings in urban environments are more likely to occur on flat ground. However, these areas are typically
shared with ground vehicles, introducing unique challenges that require precise coordination. To simulate this scenario,
we model the interaction between air taxis and ground vehicles during an emergency landing. Ground vehicles halt
their motion when the air taxi descends below a critical altitude, creating a safe buffer zone. Simultaneously, the air
taxi modulates its descent rate to provide adequate time for nearby vehicles to react. This simulation highlights the
importance of responsive systems for both aerial and ground vehicles in effectively managing unexpected events.

Notably, this emergent interaction is a natural outcome of our simulator’s internal structure, rooted in the CARLA
framework. Although CARLA was initially designed for ground vehicles, its adaptability allows us to explore aerial
vehicle scenarios, showcasing the versatility and robustness of our simulation pipeline.

D. Training of Machine Learning Solutions
AirTaxiSim supports the generation of synthetic training data for learning-based solutions in aerial vehicles. This is

especially useful for scenarios that are infeasible to replicate in the real world, such as environments cluttered with
flying obstacles or hazardous conditions. While we do not release a dataset as part of this work, AirTaxiSim includes
tools to extract data from both predefined and user-defined scenarios. Therefore, AirTaxiSim can be used to generate
datasets for training and refinement of learning-based solutions.

However, AirTaxiSim can go beyond typical supervised learning to enable a fully automated active learning paradigm.
Active learning involves dynamic adaptation of the learning data, based on external heuristics [54]. The ability of
AirTaxiSim to support automated active learning was demonstrated in a recent work [19].

An example reinforcement learning pipeline for an end-to-end flying agent is also available.

E. Metrics and Benchmarks
AirTaxiSim currently collects metrics such as collisions, time to completion, maximum velocity, and landing

velocity. Its architecture has been configured to support flexible collection of additional task- and algorithm-specific
metrics. Although benchmark definitions are still under development, the simulator’s architecture already supports
flexible integration of user-defined metrics for evaluation.

10



V. Conclusion and Future Work
This paper presents a high-fidelity simulator for autonomous aerial vehicles operating in urban environments.

The simulator integrates key components of the autonomy pipeline — including perception, planning, control, and a
photorealistic environment renderer based on CARLA. AirTaxiSim is designed to be highly customizable and adaptable
to support diverse scenarios and use cases. This adaptability includes ease of incorporating custom physics engines for
new aerial vehicle models. This simulator is designed to support research and development in urban aerial autonomy,
especially in light of recent advances in eVTOL technology and the growing interest in urban air mobility.

Future development of AirTaxiSim is expected to be collaborative and open-source, driven by the requirements to
support specific research efforts. This model ensures that in addition to supporting short terms research goals, each
development effort enhances the simulation framework with new support and capabilities. We encourage the research
community and practitioners to collaborate with us by sharing their inputs and enhancements to AirTaxiSim.

Major planned enhancements include
• Upgrade Carla version to 0.10.0 that is built on Unreal Engine 5.5 [38]. This upgrade will vastly improve the

visual fidelity of the simulated environment.
• Some physics engines for aerial vehicles support interaction with environmental factors, such as wind disturbances

and ground effect modeling. While the current version of AirTaxiSim does not include these capabilities for the
two supported vehicle models, support for environmental interaction is planned for a future release.

• Extend the scenario configuration to support existing scenario definition languages, e.g., Scenic [55].

Acknowledgments
This material is based upon work supported by the National Aeronautics and Space Administration (NASA) under

the cooperative agreement 80NSSC20M0229 and University Leadership Initiative grant no. 80NSSC22M0070, and
the National Science Foundation (NSF) under grant no. CNS 1932529 and ECCS 2311085. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the sponsors.

We also thank Michael Acheson from NASA for sharing GUAM simulator [12].

References
[1] Ward, K. A., Winter, S. R., Cross, D. S., Robbins, J. M., Mehta, R., Doherty, S., and Rice, S., “Safety systems, culture, and

willingness to fly in autonomous air taxis: A multi-study and mediation analysis,” Journal of Air Transport Management,
Vol. 91, 2021, p. 101975.

[2] LLC, W. A., “Wisk Aero,” https://wisk.aero/, 2024.

[3] Fadaie, J., “The state of modeling, simulation, and data utilization within industry: An autonomous vehicles perspective,” arXiv
preprint arXiv:1910.06075, 2019.

[4] Garrow, L. A., German, B. J., and Leonard, C. E., “Urban air mobility: A comprehensive review and comparative analysis with
autonomous and electric ground transportation for informing future research,” Transportation Research Part C: Emerging
Technologies, Vol. 132, 2021, p. 103377.

[5] Mishra, S., and Palanisamy, P., “Autonomous advanced aerial mobility—An end-to-end autonomy framework for UAVs and
beyond,” IEEE Access, Vol. 11, 2023, pp. 136318–136349.

[6] Lu, M., Taiebat, M., Xu, M., and Hsu, S.-C., “Multiagent spatial simulation of autonomous taxis for urban commute: Travel
economics and environmental impacts,” Journal of Urban Planning and Development, Vol. 144, No. 4, 2018, p. 04018033.

[7] Liu, Y., Wang, T., Zhang, H., Cheutet, V., and Shen, G., “The design and simulation of an autonomous system for aircraft
maintenance scheduling,” Computers & industrial engineering, Vol. 137, 2019, p. 106041.

[8] Naser, F., Peinecke, N., and Schuchardt, B. I., “Air taxis vs. taxicabs: A simulation study on the efficiency of UAM,” AIAA
Aviation 2021 Forum, 2021, p. 3202.

[9] Barbarino, M., Petrosino, F., and Visingardi, A., “A high-fidelity aeroacoustic simulation of a VTOL aircraft in an urban air
mobility scenario,” Aerospace Science and Technology, Vol. 125, 2022, p. 107104.

[10] Martın-Lammerding, D., Astrain, J., and Córdoba, A., “A multi-UAS simulator for high density air traffic scenarios,” Proceedings
of the VEHICULAR, 2022.

11

https://wisk.aero/


[11] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V., “CARLA: An open urban driving simulator,” Conference on
robot learning, PMLR, 2017, pp. 1–16.

[12] Acheson, M. J., Cook, J. W., and Simmons, B. M., “Generic Urban Air Mobility (GUAM) Simulation v1.1,” https:
//github.com/nasa/Generic-Urban-Air-Mobility-GUAM, 2024.

[13] Carlson, S., “MiniHawk-VTOL,” https://github.com/StephenCarlson/MiniHawk-VTOL, 2022.

[14] RoboWork, “Aerial Robotics,” https://github.com/robowork/aerial_robotics, 2023. Accessed: 2024-11-18.

[15] Open Robotics, “ROS Noetic,” https://wiki.ros.org/noetic, 2020.

[16] Singh, V., Hari, S. K. S., Tsai, T., and Pitale, M., “Simulation driven design and test for safety of ai based autonomous vehicles,”
proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 122–128.

[17] Bansal, A., and Sha, L., “Towards Certifiable Safety in Learning-Enabled Autonomous Systems: A Perspective,” 2025.

[18] Bansal, A., Zhao, Y., Zhu, J., Cheng, S., Gu, Y., Yoon, H. J., Kim, H., Hovakimyan, N., and Sha, L. R., “Synergistic perception
and control simplex for verifiable safe vertical landing,” AIAA Scitech 2024 Forum, 2024, p. 1167.

[19] Rasul, A., Tasnim, H., Yoon, H.-J., Bansal, A., Wang, D., Hovakimyan, N., Sha, L., and Voulgaris, P., “Bayesian Data
Augmentation and Training for Perception DNN in Autonomous Aerial Vehicles,” AIAA SciTech 2025 Forum, 2025, p. 0933.

[20] Bansal, A., Wang, D., Yeghiazaryan, M., Li, Y., Tao, C., Yoon, H.-J., Arora, P., Papachristos, C., Voulgaris, P., Mitra, S., et al.,
“Verification and Validation of a Vision-Based Landing System for Autonomous VTOL Air Taxis,” AIAA SCITECH 2025
Forum, 2025, p. 1322.

[21] Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise, E., Uhm, G., Gerow, M., Mehta, S., et al.,
“LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving,” 2020 IEEE 23rd International conference on
intelligent transportation systems (ITSC), IEEE, 2020, pp. 1–6.

[22] Foundation, A., “Autoware: The open-source software for autonomous driving,” https://www.autoware.org/, 2024.
Accessed: 2024-11-18.

[23] Baidu, “Apollo,” https://apollo.auto/, 2024. Accessed: 2024-11-18.

[24] Shah, S., Dey, D., Lovett, C., and Kapoor, A., “Airsim: High-fidelity visual and physical simulation for autonomous vehicles,”
Field and Service Robotics: Results of the 11th International Conference, Springer, 2018, pp. 621–635.

[25] Laminar Research, “X-Plane,” https://www.x-plane.com, 2023. Accessed: 2024-11-18.

[26] Altun, A. T., Hasanzade, M., Saldiran, E., Guner, G., Uzun, M., Fremond, R., Tang, Y., Bhundoo, P., Su, Y., Xu, Y., et al., “The
development of an advanced air mobility flight testing and simulation infrastructure,” Aerospace, Vol. 10, No. 8, 2023, p. 712.

[27] Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., and Zhang, L., “DOTA: A large-scale dataset
for object detection in aerial images,” Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 3974–3983.

[28] Sun, H., Guo, J., Meng, Z., Zhang, T., Fang, J., Lin, Y., and Yu, H., “EVD4UAV: An Altitude-Sensitive Benchmark to Evade
Vehicle Detection in UAV,” arXiv preprint arXiv:2403.05422, 2024.

[29] Bansal, A., Singh, J., Verucchi, M., Caccamo, M., and Sha, L., “Risk ranked recall: Collision safety metric for object detection
systems in autonomous vehicles,” 2021 10th Mediterranean Conference on Embedded Computing (MECO), IEEE, 2021, pp.
1–4.

[30] Marathe, A., Ramanan, D., Walambe, R., and Kotecha, K., “WEDGE: A multi-weather autonomous driving dataset built from
generative vision-language models,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2023, pp. 3318–3327.

[31] Geiger, A., Lenz, P., and Urtasun, R., “Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite,” Conference
on Computer Vision and Pattern Recognition (CVPR), 2012.

[32] Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V.,
Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J., Chen, Z.,
and Anguelov, D., “Scalability in Perception for Autonomous Driving: Waymo Open Dataset,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

12

https://github.com/nasa/Generic-Urban-Air-Mobility-GUAM
https://github.com/nasa/Generic-Urban-Air-Mobility-GUAM
https://github.com/StephenCarlson/MiniHawk-VTOL
https://github.com/robowork/aerial_robotics
https://wiki.ros.org/noetic
https://www.autoware.org/
https://apollo.auto/
https://www.x-plane.com


[33] Delgan, “Delgan/loguru: Python logging made (stupidly) simple,” https://github.com/Delgan/loguru, 2017.

[34] Docker Inc., “Docker,” https://www.docker.com/, 2013.

[35] Docker Inc., “Docker Compose,” https://docs.docker.com/compose/, 2014.

[36] CARLA Team, “Python API reference,” https://carla.readthedocs.io/en/latest/python_api/, 2025.

[37] Open Robotics, “Rosbag,” https://wiki.ros.org/rosbag, 2020.

[38] Rowe, M., “CARLA 0.10.0 Release with Unreal Engine 5.5!” https://carla.org/2024/12/19/release-0.10.0/, 2024.

[39] National Aeronautics and Space Administration (NASA), “NASA Urban Air Mobility (UAM) Reference Vehicles,” https:
//sacd.larc.nasa.gov/uam-refs/, 2024.

[40] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q., “JAX: composable transformations of Python+NumPy programs,” , 2018. URL
http://github.com/jax-ml/jax.

[41] Fan, C., “Efficiently predicting and repairing failure modes via sampling,” https://uofi.app.box.com/s/
ey543nfa836u49pjasmvxj3ss7c772vp/file/1451288867656, 2023.

[42] So, O., “JAX-GUAM,” https://github.com/oswinso/jax_guam, 2024. Accessed: 2024-11-18.

[43] Koenig, N. and Howard, A., “Design and use paradigms for Gazebo, an open-source multi-robot simulator,” 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3, 2004, pp. 2149–2154
vol.3. https://doi.org/10.1109/IROS.2004.1389727.

[44] Bennett, S., “Development of the PID controller,” IEEE Control Systems Magazine, Vol. 13, No. 6, 1993, pp. 58–62.

[45] Bauersfeld, L., and Ducard, G., “Fused-PID control for tilt-rotor VTOL aircraft,” 2020 28th Mediterranean Conference on
Control and Automation (MED), IEEE, 2020, pp. 703–708.

[46] Cao, C., and Hovakimyan, N., “Design and analysis of a novel l1 adaptive controller, part i: control signal and asymptotic
stability,” 2006 American Control Conference, IEEE, 2006, pp. 3397–3402.

[47] Kaminer, I., Pascoal, A., Xargay, E., Hovakimyan, N., Cao, C., and Dobrokhodov, V., “Path following for small unmanned
aerial vehicles using L1 adaptive augmentation of commercial autopilots,” Journal of guidance, control, and dynamics, Vol. 33,
No. 2, 2010, pp. 550–564.

[48] Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H., and Guo, X., “Real-time vehicle detection based on improved yolo v5,”
Sustainability, Vol. 14, No. 19, 2022, p. 12274.

[49] Bogoslavskyi, I., and Stachniss, C., “Fast Range Image-Based Segmentation of Sparse 3D Laser Scans for Online Operation,”
Proc. of The International Conference on Intelligent Robots and Systems (IROS), 2016. URL http://www.ipb.uni-bonn.de/pdfs/
bogoslavskyi16iros.pdf.

[50] Bogoslavskyi, I., and Stachniss, C., “Efficient Online Segmentation for Sparse 3D Laser Scans,” PFG – Journal of
Photogrammetry, Remote Sensing and Geoinformation Science, 2017, pp. 1–12. URL https://link.springer.com/article/10.
1007%2Fs41064-016-0003-y.

[51] Bansal, A., Kim, H., Yu, S., Li, B., Hovakimyan, N., Caccamo, M., and Sha, L., “Verifiable obstacle detection,” 2022 IEEE
33rd International Symposium on Software Reliability Engineering (ISSRE), IEEE, 2022, pp. 61–72.

[52] Bansal, A., Kim, H., Yu, S., Li, B., Hovakimyan, N., Caccamo, M., and Sha, L., “Perception simplex: Verifiable collision
avoidance in autonomous vehicles amidst obstacle detection faults,” Software Testing, Verification and Reliability, Vol. 34,
No. 6, 2024, p. e1879.

[53] Persson, S. M., and Sharf, I., “Sampling-based A* algorithm for robot path-planning,” The International Journal of Robotics
Research, Vol. 33, No. 13, 2014, pp. 1683–1708.

[54] Settles, B., “Active learning literature survey,” 2009.

[55] Vin, E., Kashiwa, S., Rhea, M., Fremont, D. J., Kim, E., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A. L., and
Seshia, S. A., “3D Environment Modeling for Falsification and Beyond with Scenic 3.0,” International Conference on Computer
Aided Verification, Springer, 2023, pp. 253–265.

13

https://github.com/Delgan/loguru
https://www.docker.com/
https://docs.docker.com/compose/
https://carla.readthedocs.io/en/latest/python_api/
https://wiki.ros.org/rosbag
https://carla.org/2024/12/19/release-0.10.0/
https://sacd.larc.nasa.gov/uam-refs/
https://sacd.larc.nasa.gov/uam-refs/
http://github.com/jax-ml/jax
https://uofi.app.box.com/s/ey543nfa836u49pjasmvxj3ss7c772vp/file/1451288867656
https://uofi.app.box.com/s/ey543nfa836u49pjasmvxj3ss7c772vp/file/1451288867656
https://github.com/oswinso/jax_guam
https://doi.org/10.1109/IROS.2004.1389727
http://www.ipb.uni-bonn.de/pdfs/bogoslavskyi16iros.pdf
http://www.ipb.uni-bonn.de/pdfs/bogoslavskyi16iros.pdf
https://link.springer.com/article/10.1007%2Fs41064-016-0003-y
https://link.springer.com/article/10.1007%2Fs41064-016-0003-y

